Wild Biotech co-founder Neta Raab

Two Church lab vets, a se­cre­tive in­sti­tute and an Is­raeli bil­lion­aire hunt for drugs in the guts of wild an­i­mals

Over the last four years, Ne­ta Raab and Ido Bachelet have re­ceived hun­dreds of padded card­board box­es con­tain­ing frozen poop from wild an­i­mals on five dif­fer­ent con­ti­nents.

The pack­ages came reg­u­lar­ly to their lab out­side Tel Aviv, sent from a squad of zo­ol­o­gists and spe­cial­ized Is­raeli army vet­er­ans who tracked enough an­i­mals to fill a Rud­yard Kipling nov­el, rush­ing to col­lect vul­ture and rhi­no and frog sam­ples with­in an hour of ex­tru­sion. Raab and Bachelet care­ful­ly opened the box­es, re­mov­ing the sam­ples from plas­tic-wrapped tubes and then us­ing spe­cial­ized mag­net­ic beads to fish out the bac­te­r­i­al DNA in­side for se­quenc­ing.

The re­sult of that ef­fort ap­peared Thurs­day in Sci­ence, where Raab, Bachelet and promi­nent Is­raeli com­pu­ta­tion­al bi­ol­o­gist Er­an Se­gal pub­lished what amounts to the largest data­base ever as­sem­bled of the mi­cro­bio­me, or gut bac­te­ria, in­side dif­fer­ent mem­bers of the an­i­mal king­dom. Sam­pling near­ly 200 an­i­mals, they doc­u­ment­ed 5,000 genomes across over 1,200 dif­fer­ent bac­te­r­i­al species, most of which had nev­er been seen be­fore.

Jack Gilbert

It’s a ma­jor sci­en­tif­ic achieve­ment, out­side ex­perts say, one that will al­low the grow­ing num­ber of re­searchers study­ing the mi­cro­bio­me in­side par­tic­u­lar an­i­mals, in­clud­ing hu­mans, to fit their find­ings in­to a broad­er con­text. But for Raab and Bachelet, two vet­er­ans of the George Church Lab, it’s al­so a vast trove of ge­net­ic in­for­ma­tion that could be mined for new drugs on a long list of dis­eases.

They’ve launched a com­pa­ny, Wild Biotech, to be­gin turn­ing the genes they found in­to ther­a­pies for im­muno­log­i­cal, in­flam­ma­to­ry and gas­troin­testi­nal con­di­tions. The idea is that these bac­te­ria have, over mil­lions of years, evolved pro­teins to car­ry out a wide range of unique func­tions for their hosts. Tap­ping and en­gi­neer­ing those pro­teins could help cor­rect prob­lems in hu­mans.

“This re­source re­al­ly does cre­ate a plat­form — a spring­board if you will — to ac­cel­er­ate re­search, to help us lever­age the mi­cro­bio­me in treat­ing dis­ease, im­prov­ing health, restor­ing ecosys­tems,” says Jack Gilbert, a mi­cro­bial ecol­o­gist at UC San Diego who is not in­volved in the re­search or the com­pa­ny.

Time­wise, he adds, bac­te­ria have a leg up on any med­i­c­i­nal chemist in a drug lab. “If you think about it, na­ture has been ex­per­i­ment­ing with vari­ants in mi­cro­bial chem­istry for bil­lions of years,” he says. “That’s a lot of ex­per­i­men­ta­tion — way more than any hu­man en­deav­or could hope to achieve.”

Dan Littman

Wild Biotech joins the long list of com­pa­nies that have raised bil­lions to lever­age sci­en­tists’ grow­ing un­der­stand­ing of the hu­man mi­cro­bio­me in­to new drugs for can­cer or in­fec­tious dis­ease. Those ef­forts, though, have large­ly fo­cused on giv­ing peo­ple tablets con­tain­ing strains of liv­ing bac­te­ria from hu­mans, re­ly­ing on the con­flu­ence of hun­dreds of dif­fer­ent genes to re­store a healthy im­mune sys­tem.

In try­ing to tap an­i­mal mi­cro­bio­mes and iso­late in­di­vid­ual pro­teins, Raab and Bachelet will have to show a deep­er un­der­stand­ing of the bac­te­ria and the func­tion of the genes they un­cov­ered. They say they have that tech­nol­o­gy and they’ve re­ceived an em­i­nent backer in Is­raeli bil­lion­aire Mar­ius Nacht, but so far, it re­mains un­pub­lished and un­proven.

“My guess is that there’s gonna be a lot of valu­able med­i­c­i­nal in­for­ma­tion in there,” says Dan Littman, a pro­fes­sor of mol­e­c­u­lar im­munol­o­gy at NYU and co-founder of the mi­cro­bio­me biotech Vedan­ta. “But it’s go­ing to take an enor­mous amount of work to go from here to the next step of mak­ing a valu­able prod­uct.”

A hye­na cre­at­ing a mi­cro­bio­me sam­ple in Ugan­da. Re­searchers will col­lect it with­in the hour (Gal Zanir)

Click on the im­age to see the full-sized ver­sion

A se­cre­tive Is­raeli in­sti­tute with some bird ques­tions

Wild Biotech grew out of work Raab, Bachelet and their third co­founder, Doron Levin, con­duct­ed at a small in­sti­tute in Re­hovot, Is­rael called Aug­man­i­ty. Bachelet did his post­doc at the Church lab, where he start­ed mak­ing a name in a field of nan­otech­nol­o­gy called DNA origa­mi, and he says he found­ed Aug­man­i­ty af­ter leav­ing acad­e­mia to back am­bi­tious sci­en­tif­ic projects. But he of­fered no oth­er de­tails, in­clud­ing what oth­er work they do or how many peo­ple work there.

“We’re a very stealthy or­ga­ni­za­tion,” Bachelet says, point­ing me to a sin­gle-page web­site that was of­fline at the time. “There’s no sign on the build­ing, there’s no sign on the door.”

Raab, a for­mer stu­dent and now Wild’s CEO, joined Aug­man­i­ty af­ter her own stint at the Church lab, hop­ing to help build Is­rael’s biotech scene.

The mi­cro­bio­me project arose out of sev­er­al ideas they had about birds: Is­rael is a land­ing spot for bil­lions of birds mi­grat­ing be­tween Africa and Eu­rope — could they sam­ple their drop­pings and warn coun­tries of the path­o­gen­ic bac­te­ria they car­ry? They al­so won­dered about the mi­cro­bio­mes in vul­tures and oth­er scav­engers. These an­i­mals eat rot­ting flesh, so they need to evade or with­stand the tox­ins in the bac­te­ria that grow on corpses. Did they use their own mi­cro­bio­mes to do so?

Soon, they were ask­ing about all sorts of dif­fer­ent an­i­mals and how they sur­vived con­di­tions hu­mans nev­er en­counter. “So the idea was born from many dif­fer­ent small ques­tions,” Raab says. “But at some point, we kind of had an epiphany.”

Raab worked with ex­perts from the Is­raeli sa­fari and IDF spe­cial­ists to track an­i­mals in Hun­gary, Ugan­da, the Falk­land Is­lands, Mada­gas­car, Aus­tralia and Is­rael. They used drones to fol­low an­i­mals and teamed with guides and rangers to track them by foot and ve­hi­cle. They put up nets to trap and band birds. They board­ed in­flat­able boats to trail whales off the Falk­land Is­lands, skim­ming sam­ples on the wa­ter’s sur­face.

Along with the fe­cal sam­ple, track­ers al­so logged de­tails about the in­di­vid­ual an­i­mal and lo­ca­tion. Oth­er re­searchers have looked at a wide range of cap­tive an­i­mals, but Raab want­ed wild an­i­mals, point­ing to re­search that cap­tiv­i­ty can change or even crip­ple an an­i­mal’s mi­cro­bio­me.

“It changes their ca­pac­i­ty to re­turn to na­ture,” she says. “And we re­al­ly want­ed to look for the spe­cif­ic fea­tures that en­able them to re­al­ly sur­vive in the hos­tile and harsh en­vi­ron­ments.”

To an­a­lyze the sam­ples af­ter they ar­rived in Is­rael, Bachelet and Raab reached out to Se­gal, a pi­o­neer in com­pu­ta­tion­al ge­net­ics who some­times worked on the hu­man mi­cro­bio­me. The two labs broke the DNA they ex­tract­ed — a tan­gle of strands from all the var­i­ous mi­crobes in a giv­en fe­cal sam­ple called a “metagenome” —  in­to small pieces that can be read by a se­quencer. The se­quencer spits out an in­com­pre­hen­si­ble jum­ble of frag­ments from hun­dreds or thou­sands of dif­fer­ent bac­te­ria. But by look­ing for places where the dif­fer­ent frag­ments over­lap, the re­searchers can stitch com­plete genomes back to­geth­er.

They can then tag in­di­vid­ual genes by look­ing for rec­og­niz­able pat­terns. Every gene, for ex­am­ple, starts and ends with string of let­ters called a “start” and “stop” codon.

“A metagenome is like an in­com­plete jig­saw puz­zle thrown on the floor,” says Gilbert, the UCSD re­searcher. “What they’ve done is take those puz­zle pieces and start to piece them to­geth­er.”

Sur­pris­ing in­sights

The work im­me­di­ate­ly brought sur­pris­es. David Zee­vi, a PhD stu­dent at Se­gal’s lab who worked on the metagenome analy­sis, says bac­te­ria that live on land and in the sea gen­er­al­ly have sim­i­lar genomes. So he was shocked by how much the mi­cro­bio­mes could vary be­tween species and how many new genes ap­peared.

“They have such a huge di­ver­si­ty, huge po­ten­tial of new mi­cro­bial genes,” says Zee­vi, who is now an in­de­pen­dent fel­low at Rock­e­feller about to launch his own mi­cro­bio­me lab at the Weiz­mann In­sti­tute. “What are the se­lec­tive pres­sures, in terms of evo­lu­tion, that led to some­thing like this?”

For Bachelet and Raab, though, the big ques­tion is whether they can trans­late the data­base in­to drugs. They be­gan link­ing the genes they found to traits in the pa­per, show­ing for ex­am­ple dif­fer­ences be­tween car­ni­vores and her­bi­vores that might give meat-eaters en­hanced abil­i­ties to com­bat tox­ic bac­te­ria.

As a proof-of-con­cept, they syn­the­sized one pro­tein found in grif­fon vul­tures’ mi­cro­bio­me they be­lieved helped it com­bat the dead­ly synapse-cut­ting poi­son bot­u­linum tox­in A. It turned out that the pro­tein ac­tu­al­ly sped up the tox­in’s ef­fect — part of what the re­searchers be­lieve is a cas­cade of en­zymes grif­fons use to clear it.

Bot­u­linum tox­in A is al­so the key in­gre­di­ent in Ab­b­Vie bil­lion-dol­lar Botox. Per­haps, Bachelet says, you can use the grif­fon pro­tein to cre­ate a fast-act­ing Botox, or “Su­per-Botox.” “That’s al­ready a mar­ket,” he says.

Naa­ma Ge­va Za­torsky

Naa­ma Ge­va-Za­torsky, who runs a sys­tems bi­ol­o­gy lab at the Tech­nion, agreed the tox­in pro­vid­ed a good test case, adding that she’d now like to see larg­er work on col­lect­ing, study­ing and freez­ing an­i­mal mi­cro­bio­me sam­ples, as re­searchers have done with hu­man mi­cro­bio­mes.

“This is a pure­ly beau­ti­ful study!” she said in an email. “Trans­lat­ing to med­i­cine is to­tal­ly fea­si­ble.”

Not every­one is con­vinced, though. David Berry, a part­ner at Flag­ship who played a piv­otal role in found­ing the mi­cro­bio­me biotechs Seres Ther­a­peu­tics, Evelo Bio­sciences and In­di­go Agri­cul­ture, says their work brought ma­jor in­sights in­to an un­der-ex­plored area. In the past, though, he says re­searchers have strug­gled to iso­late in­di­vid­ual genes that give a par­tic­u­lar gut bac­teri­um its im­pact.

David Berry

Of­ten­times, sci­en­tists would see two strains of the same species, one that has a pro­found ef­fect on its host and one that doesn’t. But when they tried to com­pare the two genomes to find the dif­fer­ence, they would find mil­lions of dif­fer­ences — on the same scale that sep­a­rates hu­man and ba­nanas, say, or hu­mans and fun­gi — mak­ing it im­pos­si­ble to sin­gle out a pro­tein that could be ther­a­peu­tic.

Still, he adds, some­times they found chem­i­cals pro­duced by the mi­crobes that were piv­otal.

“I wouldn’t rule out the po­ten­tial that there’s some­thing deeply im­por­tant and deeply in­sight­ful in the da­ta,” he says. “But I think there’s a whole bunch of steps that have to be tak­en to turn this in­to some­thing that can pro­duce drugs.”

A wild fu­ture 

Bachelet and Raab are now work­ing on those steps. So far they’re keep­ing most de­tails about the com­pa­ny un­der wraps. They say they have a far larg­er data­base than the one they pub­lished in Sci­ence and an AI-as­sist­ed soft­ware that can link the in­di­vid­ual genes they found to po­ten­tial im­pact par­tic­u­lar dis­or­ders.

They’re fo­cus­ing, Bachelet says, on pro­teins and func­tions you can’t find in the hu­man mi­cro­bio­me and that might of­fer new routes of ad­min­is­tra­tion or the abil­i­ty to rad­i­cal­ly al­ter the im­mune sys­tem. With bil­lion­aire Nacht’s back­ing, they’ve built a 9-per­son-team with­out hav­ing to re­ly on tra­di­tion­al VC fund­ing.

The com­pa­ny has a cou­ple lead can­di­dates from the ini­tial analy­sis and they’ll work on ex­pand­ing the plat­form and re­fin­ing the soft­ware for at least the next year, be­fore they po­ten­tial­ly need more fund­ing. In the mean­time, they’ve frozen all their old sam­ples should they need to be test­ed again or if they want to try to cul­ture in­di­vid­ual strains liv­ing in­side. It’s a one-of-a-kind re­source for the fu­ture.

“We’re heads down,” Raab says. “It’s ear­ly, still.”

Health­care Dis­par­i­ties and Sick­le Cell Dis­ease

In the complicated U.S. healthcare system, navigating a serious illness such as cancer or heart disease can be remarkably challenging for patients and caregivers. When that illness is classified as a rare disease, those challenges can become even more acute. And when that rare disease occurs in a population that experiences health disparities, such as people with sickle cell disease (SCD) who are primarily Black and Latino, challenges can become almost insurmountable.

Jacob Van Naarden (Eli Lilly)

Ex­clu­sives: Eli Lil­ly out to crash the megablock­buster PD-(L)1 par­ty with 'dis­rup­tive' pric­ing; re­veals can­cer biotech buy­out

It’s taken 7 years, but Eli Lilly is promising to finally start hammering the small and affluent PD-(L)1 club with a “disruptive” pricing strategy for their checkpoint therapy allied with China’s Innovent.

Lilly in-licensed global rights to sintilimab a year ago, building on the China alliance they have with Innovent. That cost the pharma giant $200 million in cash upfront, which they plan to capitalize on now with a long-awaited plan to bust up the high-price market in lung cancer and other cancers that have created a market worth tens of billions of dollars.

Endpoints Premium

Premium subscription required

Unlock this article along with other benefits by subscribing to one of our paid plans.

FDA hands ac­cel­er­at­ed nod to Seagen, Gen­mab's so­lo ADC in cer­vi­cal can­cer, but com­bo stud­ies look even more promis­ing

Biopharma’s resident antibody-drug conjugate expert Seagen has scored a clutch of oncology approvals in recent years, finding gold in what are known as “third-gen” ADCs. Now, another of their partnered conjugates is ready for prime time.

The FDA on Monday handed an accelerated approval to Seagen and Genmab’s Tivdak (tisotumab vedotin-tftv, or “TV”) in second-line patients with recurrent or metastatic cervical cancer who previously progressed after chemotherapy rather than PD-(L)1 systemic therapy, the companies said in a release.

David Meek, new Mirati CEO (Marlene Awaad/Bloomberg via Getty Images)

Fresh off Fer­Gene's melt­down, David Meek takes over at Mi­rati with lead KRAS drug rac­ing to an ap­proval

In the insular world of biotech, a spectacular failure can sometimes stay on any executive’s record for a long time. But for David Meek, the man at the helm of FerGene’s recent implosion, two questionable exits made way for what could be an excellent rebound.

Meek, most recently FerGene’s CEO and a past head at Ipsen, has become CEO at Mirati Therapeutics, taking the reins from founding CEO Charles Baum, who will step over into the role of president and head of R&D, according to a release.

Dave Lennon, former president of Novartis Gene Therapies

Zol­gens­ma patent spat brews be­tween No­var­tis and Re­genxbio as top No­var­tis gene ther­a­py ex­ec de­parts

Regenxbio, a small licensor of gene therapy viral vectors spun out from the University of Pennsylvania, is now finding itself in the middle of some major league patent fights.

In addition to a patent suit with Sarepta Therapeutics from last September, Novartis, is now trying to push its smaller partner out of the way. The Swiss biopharma licensed Regenxbio’s AAV9 vector for its $2.1 million spinal muscular atrophy therapy Zolgensma.

Endpoints News

Keep reading Endpoints with a free subscription

Unlock this story instantly and join 117,700+ biopharma pros reading Endpoints daily — and it's free.

Volker Wagner (L) and Jeff Legos

As Bay­er, No­var­tis stack up their ra­dio­phar­ma­ceu­ti­cal da­ta at #ES­MO21, a key de­bate takes shape

Ten years ago, a small Norwegian biotech by the name of Algeta showed up at ESMO — then the European Multidisciplinary Cancer Conference 2011 — and declared that its Bayer-partnered targeted radionuclide therapy, radium-223 chloride, boosted the overall survival of castration-resistant prostate cancer patients with symptomatic bone metastases.

In a Phase III study dubbed ALSYMPCA, patients who were treated with radium-223 chloride lived a median of 14 months compared to 11.2 months. The FDA would stamp an approval on it based on those data two years later, after Bayer snapped up Algeta and christened the drug Xofigo.

Endpoints News

Keep reading Endpoints with a free subscription

Unlock this story instantly and join 117,700+ biopharma pros reading Endpoints daily — and it's free.

Rafaèle Tordjman (Jeito Capital)

Con­ti­nu­ity and di­ver­si­ty: Rafaèle Tord­j­man's women-led VC firm tops out first fund at $630M

For a first-time fund, Jeito Capital talks a lot about continuity.

Rafaèle Tordjman had spotlighted that concept ever since she started building the firm in 2018, promising to go the extra mile(s) with biotech entrepreneurs while pushing them to reach patients faster.

Coincidentally, the lack of continuity was one of the sore spots listed in a report about the European healthcare sector published that same year by the European Investment Bank — whose fund is one of the LPs, alongside the American pension fund Teacher Retirement System of Texas and Singapore’s Temasek, to help Jeito close its first fund at $630 million (€534 million). As previously reported, Sanofi had chimed in €50 million, marking its first investment in a French life sciences fund.

Mi­rati tri­umphs again in KRAS-mu­tat­ed lung can­cer with a close­ly watched FDA fil­ing now in the cards

After a busy weekend at #ESMO21, which included a big readout for its KRAS drug adagrasib in colon cancer, Mirati Therapeutics is ready to keep the pressure on competitor Amgen with lung cancer data that will undergird an upcoming filing.

In topline results from a Phase II cohort of its KRYSTAL-1 study, adagrasib posted a response rate of 43% in second-line-or-later patients with metastatic non-small cell lung cancer containing a KRAS-G12C mutation, Mirati said Monday.

As­traZeneca, Dai­ichi Sanky­o's ADC En­her­tu blows away Roche's Kad­cy­la in sec­ond-line ad­vanced breast can­cer

AstraZeneca and Japanese drugmaker Daiichi Sankyo think they’ve struck gold with their next-gen ADC drug Enhertu, which has shown some striking data in late-stage breast cancer trials and early solid tumor tests. Getting into earlier patients is now the goal, starting with Enhertu’s complete walkover of a Roche drug in second-line breast cancer revealed Saturday.

Enhertu cut the risk of disease progression or death by a whopping 72% (p=<0.0001) compared with Roche’s ADC Kadcyla in second-line unresectable and/or metastatic HER2-positive breast cancer patients who had previously undergone treatment with a Herceptin-chemo combo, according to interim data from the Phase III DESTINY-Breast03 head-to-head study presented at this weekend’s #ESMO21.

Endpoints News

Keep reading Endpoints with a free subscription

Unlock this story instantly and join 117,700+ biopharma pros reading Endpoints daily — and it's free.